3.206 \(\int \frac{\csc ^2(c+d x)}{a+a \sin (c+d x)} \, dx\)

Optimal. Leaf size=51 \[ -\frac{2 \cot (c+d x)}{a d}+\frac{\tanh ^{-1}(\cos (c+d x))}{a d}+\frac{\cot (c+d x)}{d (a \sin (c+d x)+a)} \]

[Out]

ArcTanh[Cos[c + d*x]]/(a*d) - (2*Cot[c + d*x])/(a*d) + Cot[c + d*x]/(d*(a + a*Sin[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.0766124, antiderivative size = 51, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.238, Rules used = {2768, 2748, 3767, 8, 3770} \[ -\frac{2 \cot (c+d x)}{a d}+\frac{\tanh ^{-1}(\cos (c+d x))}{a d}+\frac{\cot (c+d x)}{d (a \sin (c+d x)+a)} \]

Antiderivative was successfully verified.

[In]

Int[Csc[c + d*x]^2/(a + a*Sin[c + d*x]),x]

[Out]

ArcTanh[Cos[c + d*x]]/(a*d) - (2*Cot[c + d*x])/(a*d) + Cot[c + d*x]/(d*(a + a*Sin[c + d*x]))

Rule 2768

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[(b
^2*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(a*f*(b*c - a*d)*(a + b*Sin[e + f*x])), x] + Dist[d/(a*(b*c - a*
d)), Int[(c + d*Sin[e + f*x])^n*(a*n - b*(n + 1)*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[
b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 0] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{\csc ^2(c+d x)}{a+a \sin (c+d x)} \, dx &=\frac{\cot (c+d x)}{d (a+a \sin (c+d x))}-\frac{\int \csc ^2(c+d x) (-2 a+a \sin (c+d x)) \, dx}{a^2}\\ &=\frac{\cot (c+d x)}{d (a+a \sin (c+d x))}-\frac{\int \csc (c+d x) \, dx}{a}+\frac{2 \int \csc ^2(c+d x) \, dx}{a}\\ &=\frac{\tanh ^{-1}(\cos (c+d x))}{a d}+\frac{\cot (c+d x)}{d (a+a \sin (c+d x))}-\frac{2 \operatorname{Subst}(\int 1 \, dx,x,\cot (c+d x))}{a d}\\ &=\frac{\tanh ^{-1}(\cos (c+d x))}{a d}-\frac{2 \cot (c+d x)}{a d}+\frac{\cot (c+d x)}{d (a+a \sin (c+d x))}\\ \end{align*}

Mathematica [A]  time = 0.185737, size = 57, normalized size = 1.12 \[ \frac{\sec (c+d x) \left (2 \sin (c+d x)-\csc (c+d x)+\sqrt{\cos ^2(c+d x)} \tanh ^{-1}\left (\sqrt{\cos ^2(c+d x)}\right )-1\right )}{a d} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[c + d*x]^2/(a + a*Sin[c + d*x]),x]

[Out]

(Sec[c + d*x]*(-1 + ArcTanh[Sqrt[Cos[c + d*x]^2]]*Sqrt[Cos[c + d*x]^2] - Csc[c + d*x] + 2*Sin[c + d*x]))/(a*d)

________________________________________________________________________________________

Maple [A]  time = 0.042, size = 77, normalized size = 1.5 \begin{align*}{\frac{1}{2\,da}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }-2\,{\frac{1}{da \left ( \tan \left ( 1/2\,dx+c/2 \right ) +1 \right ) }}-{\frac{1}{2\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}}-{\frac{1}{da}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(d*x+c)^2/(a+a*sin(d*x+c)),x)

[Out]

1/2/a/d*tan(1/2*d*x+1/2*c)-2/a/d/(tan(1/2*d*x+1/2*c)+1)-1/2/a/d/tan(1/2*d*x+1/2*c)-1/a/d*ln(tan(1/2*d*x+1/2*c)
)

________________________________________________________________________________________

Maxima [B]  time = 0.990806, size = 151, normalized size = 2.96 \begin{align*} -\frac{\frac{\frac{5 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1}{\frac{a \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac{a \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}}} + \frac{2 \, \log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a} - \frac{\sin \left (d x + c\right )}{a{\left (\cos \left (d x + c\right ) + 1\right )}}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)^2/(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

-1/2*((5*sin(d*x + c)/(cos(d*x + c) + 1) + 1)/(a*sin(d*x + c)/(cos(d*x + c) + 1) + a*sin(d*x + c)^2/(cos(d*x +
 c) + 1)^2) + 2*log(sin(d*x + c)/(cos(d*x + c) + 1))/a - sin(d*x + c)/(a*(cos(d*x + c) + 1)))/d

________________________________________________________________________________________

Fricas [B]  time = 1.8429, size = 433, normalized size = 8.49 \begin{align*} \frac{4 \, \cos \left (d x + c\right )^{2} +{\left (\cos \left (d x + c\right )^{2} -{\left (\cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right ) - 1\right )} \log \left (\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) -{\left (\cos \left (d x + c\right )^{2} -{\left (\cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right ) - 1\right )} \log \left (-\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) + 2 \,{\left (2 \, \cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right ) + 2 \, \cos \left (d x + c\right ) - 2}{2 \,{\left (a d \cos \left (d x + c\right )^{2} - a d -{\left (a d \cos \left (d x + c\right ) + a d\right )} \sin \left (d x + c\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)^2/(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

1/2*(4*cos(d*x + c)^2 + (cos(d*x + c)^2 - (cos(d*x + c) + 1)*sin(d*x + c) - 1)*log(1/2*cos(d*x + c) + 1/2) - (
cos(d*x + c)^2 - (cos(d*x + c) + 1)*sin(d*x + c) - 1)*log(-1/2*cos(d*x + c) + 1/2) + 2*(2*cos(d*x + c) + 1)*si
n(d*x + c) + 2*cos(d*x + c) - 2)/(a*d*cos(d*x + c)^2 - a*d - (a*d*cos(d*x + c) + a*d)*sin(d*x + c))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{\csc ^{2}{\left (c + d x \right )}}{\sin{\left (c + d x \right )} + 1}\, dx}{a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)**2/(a+a*sin(d*x+c)),x)

[Out]

Integral(csc(c + d*x)**2/(sin(c + d*x) + 1), x)/a

________________________________________________________________________________________

Giac [A]  time = 1.17431, size = 119, normalized size = 2.33 \begin{align*} -\frac{\frac{2 \, \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) \right |}\right )}{a} - \frac{\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{a} - \frac{\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 4 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )} a}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)^2/(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

-1/2*(2*log(abs(tan(1/2*d*x + 1/2*c)))/a - tan(1/2*d*x + 1/2*c)/a - (tan(1/2*d*x + 1/2*c)^2 - 4*tan(1/2*d*x +
1/2*c) - 1)/((tan(1/2*d*x + 1/2*c)^2 + tan(1/2*d*x + 1/2*c))*a))/d